Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
2.
J Appl Physiol (1985) ; 136(2): 385-398, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38174374

RESUMO

We investigated the locomotor muscle metaboreflex control of ventilation, circulation, and dyspnea in patients with chronic obstructive pulmonary disease (COPD). Ten patients [forced expiratory volume in 1 second (FEV1; means ± SD) = 43 ± 17% predicted] and nine age- and sex-matched controls underwent 1) cycling exercise followed by postexercise circulatory occlusion (PECO) to activate the metaboreflex or free circulatory flow to inactivate it, 2) cold pressor test to interpret whether any altered reflex response was specific to the metaboreflex arc, and 3) muscle biopsy to explore the metaboreflex arc afferent side. We measured airflow, dyspnea, heart rate, arterial pressure, muscle blood flow, and vascular conductance during reflexes activation. In addition, we measured fiber types, glutathione redox balance, and metaboreceptor-related mRNAs in the vastus lateralis. Metaboreflex activation increased ventilation versus free flow in patients (∼15%, P < 0.020) but not in controls (P > 0.450). In contrast, metaboreflex activation did not change dyspnea in patients (P = 1.000) but increased it in controls (∼100%, P < 0.001). Other metaboreflex-induced responses were similar between groups. Cold receptor activation increased ventilation similarly in both groups (P = 0.46). Patients had greater type II skeletal myocyte percentage (14%, P = 0.010), lower glutathione ratio (-34%, P = 0.015), and lower nerve growth factor (NGF) mRNA expression (-60%, P = 0.031) than controls. Therefore, COPD altered the locomotor muscle metaboreflex control of ventilation. It increased type II myocyte percentage and elicited redox imbalance, potentially producing more muscle metaboreceptor stimuli. Moreover, it decreased NGF expression, suggesting a downregulation of metabolically sensitive muscle afferents.NEW & NOTEWORTHY This study's integrative physiology approach provides evidence for a specific alteration in locomotor muscle metaboreflex control of ventilation in patients with COPD. Furthermore, molecular analyses of a skeletal muscle biopsy suggest that the amount of muscle metaboreceptor stimuli derived from type II skeletal myocytes and redox imbalance overcame a downregulation of metabolically sensitive muscle afferents.


Assuntos
Fator de Crescimento Neural , Doença Pulmonar Obstrutiva Crônica , Humanos , Fator de Crescimento Neural/metabolismo , Reflexo/fisiologia , Músculo Esquelético/fisiologia , Dispneia , Glutationa/metabolismo , Pressão Sanguínea/fisiologia
3.
Sci Rep ; 13(1): 21970, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081853

RESUMO

Exercise training reduces the incidence of several cancers, but the mechanisms underlying these effects are not fully understood. Exercise training can affect the spleen function, which controls the hematopoiesis and immune response. Analyzing different cancer models, we identified that 4T1, LLC, and CT26 tumor-bearing mice displayed enlarged spleen (splenomegaly), and exercise training reduced spleen mass toward control levels in two of these models (LLC and CT26). Exercise training also slowed tumor growth in melanoma B16F10, colon tumor 26 (CT26), and Lewis lung carcinoma (LLC) tumor-bearing mice, with minor effects in mammary carcinoma 4T1, MDA-MB-231, and MMTV-PyMT mice. In silico analyses using transcriptome profiles derived from these models revealed that platelet factor 4 (Pf4) is one of the main upregulated genes associated with splenomegaly during cancer progression. To understand whether exercise training would modulate the expression of these genes in the tumor and spleen, we investigated particularly the CT26 model, which displayed splenomegaly and had a clear response to the exercise training effects. RT-qPCR analysis confirmed that trained CT26 tumor-bearing mice had decreased Pf4 mRNA levels in both the tumor and spleen when compared to untrained CT26 tumor-bearing mice. Furthermore, exercise training specifically decreased Pf4 mRNA levels in the CT26 tumor cells. Aspirin treatment did not change tumor growth, splenomegaly, and tumor Pf4 mRNA levels, confirming that exercise decreased non-platelet Pf4 mRNA levels. Finally, tumor Pf4 mRNA levels are deregulated in The Cancer Genome Atlas Program (TCGA) samples and predict survival in multiple cancer types. This highlights the potential therapeutic value of exercise as a complementary approach to cancer treatment and underscores the importance of understanding the exercise-induced transcriptional changes in the spleen for the development of novel cancer therapies.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias do Colo , Animais , Camundongos , Esplenomegalia , Fator Plaquetário 4/genética , Fatores Imunológicos , Inibidores da Angiogênese , Neoplasias do Colo/patologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/terapia , RNA Mensageiro , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral
4.
Front Endocrinol (Lausanne) ; 14: 1081056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077354

RESUMO

Introduction: Resistance exercise can significantly increase serum steroid concentrations after an exercise bout. Steroid hormones are involved in the regulation of several important bodily functions (e.g., muscle growth) through both systemic delivery and local production. Thus, we aimed to determine whether resistance exercise-induced increases in serum steroid hormone concentrations are accompanied by enhanced skeletal muscle steroid concentrations, or whether muscle contractions per se induced by resistance exercise can increase intramuscular steroid concentrations. Methods: A counterbalanced, within-subject, crossover design was applied. Six resistance-trained men (26 ± 5 years; 79 ± 8 kg; 179 ± 10 cm) performed a single-arm lateral raise exercise (10 sets of 8 to 12 RM - 3 min rest between sets) targeting the deltoid muscle followed by either squat exercise (10 sets of 8 to 12 RM - 1 min rest) to induce a hormonal response (high hormone [HH] condition) or rest (low hormone [LH] condition). Blood samples were obtained pre-exercise and 15 min and 30 min post-exercise; muscle specimens were harvested pre-exercise and 45 min post-exercise. Immunoassays were used to measure serum and muscle steroids (total and free testosterone, dehydroepiandrosterone sulfate, dihydrotestosterone, and cortisol; free testosterone measured only in serum and dehydroepiandrosterone only in muscle) at these time points. Results: In the serum, only cortisol significantly increased after the HH protocol. There were no significant changes in muscle steroid concentrations after the protocols. Discussion: Our study provides evidence that serum steroid concentration increases (cortisol only) seem not to be aligned with muscle steroid concentrations. The lack of change in muscle steroid after protocols suggests that resistance-trained individuals were desensitized to the exercise stimuli. It is also possible that the single postexercise timepoint investigated in this study might be too early or too late to observe changes. Thus, additional timepoints should be examined to determine if RE can indeed change muscle steroid concentrations either by skeletal muscle uptake of these hormones or the intramuscular steroidogenesis process.


Assuntos
Hidrocortisona , Músculo Esquelético , Humanos , Masculino , Di-Hidrotestosterona , Músculo Esquelético/fisiologia , Esteroides , Testosterona , Estudos Cross-Over
5.
Med Sci Sports Exerc ; 55(3): 418-429, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730960

RESUMO

PURPOSE: To investigate the mechanoreflex control of respiration and circulation in patients with chronic obstructive pulmonary disease (COPD). METHODS: Twenty-eight patients with moderate-to-severe COPD (mean ± SD: 67.0 ± 7.9 yr, 10 women) and 14 age- and sex-matched controls (67.9 ± 2.6 yr, 7 women) participated in the study. Their dominant knee was passively moved to stimulate mechanoreceptors, whereas vastus lateralis surface electrical activity checked active contractions. A differential pressure flowmeter, an electrocardiogram, and a servo-controlled finger photoplethysmograph acquired cardiorespiratory data. To gain insight into the mechanoreflex arc, we further analyzed reduced/oxidized glutathione ratio and mechanoreceptor-related gene expression in a vastus lateralis biopsy of additional nine patients (63.9 ± 8.1 yr, 33% women) and eight controls (62.9 ± 9.1 yr, 38% women). RESULTS: Patients with COPD had a greater peak respiratory frequency response (COPD: Δ = 3.2 ± 2.3 vs Controls: 1.8 ± 1.2 cycles per minute, P = 0.036) and a smaller peak tidal volume response to passive knee movement than controls. Ventilation, heart rate, stroke volume, and cardiac output peak responses, and total peripheral resistance nadir response, were unaltered by COPD. In addition, patients had a diminished glutathione ratio (COPD: 13.3 ± 3.8 vs controls: 20.0 ± 5.5 a.u., P = 0.015) and an augmented brain-derived neurotrophic factor expression (COPD: 2.0 ± 0.7 vs controls: 1.1 ± 0.4 a.u., P = 0.002) than controls. Prostaglandin E receptor 4, cyclooxygenase 2, and Piezo1 expression were similar between groups. CONCLUSIONS: Respiratory frequency response to mechanoreceptors activation is increased in patients with COPD. This abnormality is possibly linked to glutathione redox imbalance and augmented brain-derived neurotrophic factor expression within locomotor muscles, which could increase mechanically sensitive afferents' stimulation and sensitivity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença Pulmonar Obstrutiva Crônica , Feminino , Humanos , Masculino , Canais Iônicos , Joelho , Extremidade Inferior , Mecanorreceptores/fisiologia , Pessoa de Meia-Idade , Idoso
6.
Lung Cancer Manag ; 12(4): LMT63, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38239811

RESUMO

Aim: To summarize current knowledge, gaps, quality of the evidence and show main results related to the role of the autonomic nervous system in lung cancer. Methods: Studies were identified through electronic databases (PubMed, Scopus, Embase and Cochrane Library) in October 2023, and a descriptive analysis was performed. Twenty-four studies were included, and most were observational. Results: Our data indicated an increased expression of ß-2-adrenergic receptors in lung cancer, which was associated with poor prognosis. However, the use of ß-blockers as an add-on to standard treatment promoted enhanced overall survival, recurrence-free survival and reduced metastasis occurrence. Conclusion: Although the results herein seem promising, future research using high-quality prospective clinical trials is required to draw directions to guide clinical interventions.


Lung cancer is one of the most common causes of cancer-related deaths in the world, which often goes undiagnosed until it is in an advanced stage. Recently, the autonomic nervous system (sympathetic and parasympathetic nervous systems) has been identified as a regulator of cancer growth and spread, including lung cancer. In fact, preclinical studies have demonstrated that autonomic innervation in lung cancer can trigger tumor progression, metastasis, and resistance to treatment, worsening the prognosis. In this sense, add-on strategies to standard cancer treatments have been investigating and one of them has stood out: the incidental use of ß-blockers (patients who used ß-blockers for the treatment of hypertension and/or cardiovascular diseases or anxiety) before surgeries or during chemotherapy, which has been associated with improved clinical outcomes. Thus, a scoping review was conducted to summarizing the current knowledge about the quality of evidence, gaps and main results related to the role of the autonomic nervous system in human lung cancer. Data from this review indicated an increase in sympathetic nervous system receptors associated with a worse prognosis in patients with lung cancer. Indeed, those patients who took ß-blockers along with lung cancer treatment showed an increase in survival and a reduction in the occurrence of metastases. Although the results herein seem promising, further prospective clinical studies are needed to investigate the effect of the intentional and controlled use of ß-blockers as an add-on strategy on the treatment of different types and stages of lung cancer.

8.
Stem Cell Rev Rep ; 18(7): 2431-2443, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35244862

RESUMO

Knockout (ko) mice for the ß2 adrenoceptor (Adrß2) have impaired skeletal muscle regeneration, suggesting that this receptor is important for muscle stem cell (satellite cell) function. Here, we investigated the role of Adrß2 in the function of satellite cells from ß2ko mice in the context of muscle regeneration, through in vivo and in vitro experiments. Immunohistochemical analysis showed a significant reduction in the number of self-renewed Pax7+ satellite cells, proliferating Pax7+/MyoD+ myogenic precursor cells, and regenerating eMHC+ myofibers in regenerating muscle of ß2ko mice at 30, 3, and 10 days post-injury, respectively. Quiescent satellite cells were isolated by fluorescence-activated cell sorting, and cell cycle entry was assessed by EdU incorporation. The results demonstrated a lower number of proliferating Pax7+/EdU+ satellite cells from ß2ko mice. There was an increase in the gene expression of the cell cycle inhibitor Cdkn1a and Notch pathway components and the activation of Notch signaling in proliferating myoblasts from ß2ko mice. There was a decrease in the number of myogenin-positive nuclei in myofibers maintained in differentiation media, and a lower fusion index in differentiating myoblasts from ß2ko mice. Furthermore, the gene expression of Wnt/ß-catenin signaling components, the expression of nuclear ß-catenin and the activation of Wnt/ß-catenin signaling decreased in differentiating myoblasts from ß2ko mice. These results indicate that Adrß2 plays a crucial role in satellite cell self-renewal, as well as in myoblast proliferation and differentiation by regulating Notch and Wnt/ß-catenin signaling, respectively.


Assuntos
Células Satélites de Músculo Esquelético , Animais , Camundongos , Camundongos Knockout , Músculos/metabolismo , Miogenina/metabolismo , Receptores Adrenérgicos/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
9.
Genes (Basel) ; 14(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36672843

RESUMO

Patients with peripheral artery disease (PAD) have reduced muscle capillary density. Walking training (WT) is recommended for PAD patients. The goal of the study was to verify whether WT promotes angiogenesis in PAD-affected muscle and to investigate the possible role of miRNA-126 and the vascular endothelium growth factor (VEGF) angiogenic pathways on this adaptation. Thirty-two men with PAD were randomly allocated to two groups: WT (n = 16, 2 sessions/week) and control (CO, n = 16). Maximal treadmill tests and gastrocnemius biopsies were performed at baseline and after 12 weeks. Histological and molecular analyses were performed by blinded researchers. Maximal walking capacity increased by 65% with WT. WT increased the gastrocnemius capillary-fiber ratio (WT = 109 ± 13 vs. 164 ± 21 and CO = 100 ± 8 vs. 106 ± 6%, p < 0.001). Muscular expression of miRNA-126 and VEGF increased with WT (WT = 101 ± 13 vs. 130 ± 5 and CO = 100 ± 14 vs. 77 ± 20%, p < 0.001; WT = 103 ± 28 vs. 153 ± 59 and CO = 100 ± 36 vs. 84 ± 41%, p = 0.001, respectively), while expression of PI3KR2 decreased (WT = 97 ± 23 vs. 75 ± 21 and CO = 100 ± 29 vs. 105 ± 39%, p = 0.021). WT promoted angiogenesis in the muscle affected by PAD, and miRNA-126 may have a role in this adaptation by inhibiting PI3KR2, enabling the progression of the VEGF signaling pathway.


Assuntos
MicroRNAs , Doença Arterial Periférica , Masculino , Humanos , Claudicação Intermitente/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Doença Arterial Periférica/genética , Doença Arterial Periférica/metabolismo , Músculo Esquelético/metabolismo , Caminhada/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo
10.
FASEB J ; 35(7): e21714, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118107

RESUMO

We tested the hypothesis that cancer cachexia progression would induce oxidative post-translational modifications (Ox-PTMs) associated with skeletal muscle wasting, with different responses in muscles with the prevalence of glycolytic and oxidative fibers. We used cysteine-specific isotopic coded affinity tags (OxICAT) and gel-free mass spectrometry analysis to investigate the cysteine Ox-PTMs profile in the proteome of both plantaris (glycolytic) and soleus (oxidative) muscles in tumor-bearing and control rats. Histological analysis revealed muscle atrophy in type II fibers in plantaris muscle, with no changes in plantaris type I fibers and no differences in both soleus type I and II fibers in tumor-bearing rats when compared to healthy controls. Tumor progression altered the Ox-PTMs profile in both plantaris and soleus. However, pathway analysis including the differentially oxidized proteins revealed tricarboxylic acid cycle and oxidative phosphorylation as main affected pathways in plantaris muscle from tumor-bearing rats, while the same analysis did not show main metabolic pathways affected in the soleus muscle. In addition, cancer progression affected several metabolic parameters such as ATP levels and markers of oxidative stress associated with muscle atrophy in plantaris muscle, but not in soleus. However, isolated soleus from tumor-bearing rats had a reduced force production capacity when compared to controls. These novel findings demonstrate that tumor-bearing rats have severe muscle atrophy exclusively in glycolytic fibers. Cancer progression is associated with cysteine Ox-PTMs in the skeletal muscle, but these modifications affect different pathways in a glycolytic muscle compared to an oxidative muscle, indicating that intrinsic muscle oxidative capacity determines the response to cancer cachectic effects.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular/patologia , Neoplasias/patologia , Estresse Oxidativo/fisiologia , Animais , Caquexia/patologia , Progressão da Doença , Glicólise/fisiologia , Masculino , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Oxirredução , Fosforilação Oxidativa , Ratos , Ratos Wistar
11.
Front Cardiovasc Med ; 8: 605993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869297

RESUMO

Doxorubicin causes cardiotoxicity and exercise intolerance. Pre-conditioning exercise training seems to prevent doxorubicin-induced cardiac damage. However, the effectiveness of the cardioprotective effects of exercise training concomitantly with doxorubicin treatment remains largely unknown. To determine whether low-to-moderate intensity aerobic exercise training during doxorubicin treatment would prevent cardiotoxicity and exercise intolerance, we performed exercise training concomitantly with chronic doxorubicin treatment in mice. Ventricular structure and function were accessed by echocardiography, exercise tolerance by maximal exercise test, and cardiac biology by histological and molecular techniques. Doxorubicin-induced cardiotoxicity, evidenced by impaired ventricular function, cardiac atrophy, and fibrosis. Exercise training did not preserve left ventricular ejection fraction or reduced fibrosis. However, exercise training preserved myocardial circumferential strain alleviated cardiac atrophy and restored cardiomyocyte cross-sectional area. On the other hand, exercise training exacerbated doxorubicin-induced body wasting without affecting survival. Finally, exercise training blunted doxorubicin-induced exercise intolerance. Exercise training performed during doxorubicin-based chemotherapy can be a valuable approach to attenuate cardiotoxicity.

12.
Eur J Vasc Endovasc Surg ; 61(6): 954-963, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33875324

RESUMO

OBJECTIVE: This study examined the impact of submaximal walking training (WT) on local and systemic nitric oxide (NO) bioavailability, inflammation, and oxidative stress in patients with intermittent claudication (IC). METHODS: The study employed a randomised, controlled, parallel group design and was performed in a single centre. Thirty-two men with IC were randomly allocated to two groups: WT (n = 16, two sessions/week, 15 cycles of two minutes walking at an intensity corresponding to the heart rate obtained at the pain threshold interspersed by two minutes of upright rest) and control (CO, n = 16, two sessions/week, 30 minutes of stretching). NO bioavailability (blood NO and muscle nitric oxide synthase [eNOS]), redox homeostasis (catalase [CAT], superoxide dismutase [SOD], lipid peroxidation [LPO] measured in blood and muscle), and inflammation (interleukin-6 [IL-6], C-reactive protein [CRP], tumour necrosis factor α [TNF-α], intercellular adhesion molecules [ICAM], vascular adhesion molecules [VCAM] measured in blood and muscle) were assessed at baseline and after 12 weeks. RESULTS: WT statistically significantly increased blood NO, muscle eNOS, blood SOD and CAT, and muscle SOD and abolished the increase in circulating and muscle LPO observed in the CO group. WT decreased blood CRP, ICAM, and VCAM and muscle IL-6 and CRP and eliminated the increase in blood TNF-α and muscle TNF-α, ICAM and VCAM observed in the CO group. CONCLUSION: WT at an intensity of pain threshold improved NO bioavailability and decreased systemic and local oxidative stress and inflammation in patients with IC. The proposed WT protocol provides physiological adaptations that may contribute to cardiovascular health in these patients.


Assuntos
Exercício Físico/fisiologia , Inflamação , Claudicação Intermitente , Músculo Esquelético/metabolismo , Estresse Oxidativo , Caminhada/fisiologia , Adaptação Fisiológica/fisiologia , Proteína C-Reativa/análise , Teste de Esforço/métodos , Fatores de Risco de Doenças Cardíacas , Humanos , Claudicação Intermitente/sangue , Claudicação Intermitente/fisiopatologia , Claudicação Intermitente/terapia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/análise , Avaliação de Resultados em Cuidados de Saúde , Superóxido Dismutase/análise , Molécula 1 de Adesão de Célula Vascular/análise
13.
Cell Rep ; 35(3): 109018, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882313

RESUMO

Physical exercise has profound effects on quality of life and susceptibility to chronic disease; however, the regulation of skeletal muscle function at the molecular level after exercise remains unclear. We tested the hypothesis that the benefits of exercise on muscle function are linked partly to microtraumatic events that result in accumulation of circulating heme. Effective metabolism of heme is controlled by Heme Oxygenase-1 (HO-1, Hmox1), and we find that mouse skeletal muscle-specific HO-1 deletion (Tam-Cre-HSA-Hmox1fl/fl) shifts the proportion of muscle fibers from type IIA to type IIB concomitant with a disruption in mitochondrial content and function. In addition to a significant impairment in running performance and response to exercise training, Tam-Cre-HSA-Hmox1fl/fl mice show remarkable muscle atrophy compared to Hmox1fl/fl controls. Collectively, these data define a role for heme and HO-1 as central regulators in the physiologic response of skeletal muscle to exercise.


Assuntos
Heme Oxigenase-1/genética , Heme/metabolismo , Proteínas de Membrana/genética , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/genética , Condicionamento Físico Animal/fisiologia , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Animais , Ferroquelatase/genética , Ferroquelatase/metabolismo , Regulação da Expressão Gênica , Heme Oxigenase-1/deficiência , Isoenzimas/genética , Isoenzimas/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Transdução de Sinais , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
J Am Heart Assoc ; 10(5): e018076, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619982

RESUMO

Background Patients treated for breast cancer have a high incidence of cardiovascular complications. In this study, we evaluated the impact of breast cancer on cardiac function and cardiomyocyte Ca2+-handling protein expression. We also investigated whether exercise training (ET) would prevent these potential alterations. Methods and Results Transgenic mice with spontaneous breast cancer (mouse mammary tumor virus-polyomavirus middle T antigen [MMTV-PyMT+], n=15) and littermate mice with no cancer (MMTV-PyMT-, n=14) were studied. For the ET analysis, MMTV-PyMT+ were divided into sedentary (n=10) and exercise-trained (n=12) groups. Cardiac function was evaluated by echocardiography with speckle-tracking imaging. Exercise tolerance test was conducted on a treadmill. Both studies were performed when the tumor became palpable and when it reached 1 cm3. After euthanasia, Ca2+-handling protein expression (Western blot) was evaluated. Exercise capacity was reduced in MMTV-PyMT+ compared with MMTV-PyMT- (Pinteraction=0.031). Longitudinal strain (Pgroup <0.001) and strain rate (Pgroup=0.030) were impaired. Cardiomyocyte phospholamban was increased (P=0.011), whereas phospho-phospholamban and sodium/calcium exchanger were decreased (P=0.038 and P=0.017, respectively) in MMTV-PyMT+. No significant difference in sarcoplasmic or endoplasmic reticulum calcium 2 ATPase (SERCA2a) was found. SERCA2a/phospholamban ratio was reduced (P=0.007). ET was not associated with increased exercise capacity. ET decreased left ventricular end-systolic diameter (Pgroup=0.038) and end-diastolic volume (Pgroup=0.026). Other morphological and functional cardiac parameters were not improved by ET in MMTV-PyMT+. ET did not improve cardiomyocyte Ca2+-handling protein expression. Conclusions Breast cancer is associated with decreased exercise capacity and subclinical left ventricular dysfunction in MMTV-PyMT+, which is at least partly associated with dysregulation of cardiomyocyte Ca2+ handling. ET did not prevent or reverse these changes.


Assuntos
Neoplasias da Mama/complicações , Cálcio/metabolismo , Doenças Cardiovasculares/etiologia , Ventrículos do Coração/fisiopatologia , Miócitos Cardíacos/metabolismo , Condicionamento Físico Animal/métodos , Função Ventricular Esquerda/fisiologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Ecocardiografia Doppler , Feminino , Ventrículos do Coração/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Neoplasias Experimentais , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
15.
Cancers (Basel) ; 14(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008195

RESUMO

Cancer cachexia is a multifactorial and devastating syndrome characterized by severe skeletal muscle mass loss and dysfunction. As cachexia still has neither a cure nor an effective treatment, better understanding of skeletal muscle plasticity in the context of cancer is of great importance. Although aerobic exercise training (AET) has been shown as an important complementary therapy for chronic diseases and associated comorbidities, the impact of AET on skeletal muscle mass maintenance during cancer progression has not been well documented yet. Here, we show that previous AET induced a protective mechanism against tumor-induced muscle wasting by modulating the Akt/mTORC1 signaling and eukaryotic initiation factors, specifically eIF2-α. Thereafter, it was determined whether the in vivo Akt activation would induce a hypertrophic profile in cachectic muscles. As observed for the first time, Akt-induced hypertrophy was able and sufficient to either prevent or revert cancer cachexia by modulating both Akt/mTORC1 pathway and the eIF-2α activation, and induced a better muscle functionality. These findings provide evidence that skeletal muscle tissue still preserves hypertrophic potential to be stimulated by either AET or gene therapy to counteract cancer cachexia.

16.
J Cardiovasc Nurs ; 36(5): 498-506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32427794

RESUMO

OBJECTIVE: The aim of this study was to assess the effects of a single bout of maximal walking on blood and muscle nitric oxide (NO) bioavailability, oxidative stress, and inflammation in symptomatic peripheral artery disease (PAD) patients. METHODS: A total of 35 men with symptomatic PAD performed a graded maximal exercise test on a treadmill (3.2 km/h, 2% increase in grade every 2 minutes). Plasma samples and gastrocnemius muscle biopsies were collected preexercise and postexercise for assessment of NO bioavailability (plasma NO and muscle, endothelial NO synthase), oxidative stress and antioxidant function (lipid peroxidation [LPO], catalase [CAT], and superoxide dismutase), and inflammation (interleukin-6, C-reactive protein, tumor necrosis factor-α, intercellular adhesion molecules, and vascular adhesion molecules). The effects of the walking exercise were assessed using paired t tests or Wilcoxon tests. RESULTS: After maximal walking, plasma NO and LPO were unchanged (P > .05), plasma CAT decreased, and all blood inflammatory markers increased (all P ≤ .05). In the disease-affected skeletal muscle, endothelial NO synthase, CAT, LPO, and all inflammatory markers increased, whereas superoxide dismutase decreased (all P ≤ .05). CONCLUSION: In patients with symptomatic PAD, maximal exercise induces local and systemic impairments, which may play a key role in atherogenesis. Exercise strategies that avoid maximal effort may be important to reduce local and systemic damage and enhance clinical benefits.


Assuntos
Doença Arterial Periférica , Caminhada , Teste de Esforço , Humanos , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo
17.
Clin Auton Res ; 31(2): 239-251, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32875456

RESUMO

PURPOSE: Patients with chronic chagasic cardiomyopathy with preserved ventricular function present with autonomic imbalance. This study evaluated the effects of exercise training (ET) in restoring peripheral and cardiac autonomic control and skeletal muscle phenotype in patients with subclinical chronic chagasic cardiomyopathy. METHODS: This controlled trial (NCT02295215) included 24 chronic chagasic cardiomyopathy patients who were randomized www.random.org/lists/ into two groups: those who underwent exercise training (n = 12) and those who continued their usual activities (n = 12). Eight patients completed the exercise training protocol, and 10 patients were clinically followed up for 4 months. Muscular sympathetic nerve activity was measured by microneurography and muscle blood flow (MBF) using venous occlusion plethysmography. The low-frequency component of heart rate variability in normalized units (LFnuHR) reflects sympathetic activity in the heart, and the low-frequency component of systolic blood pressure variability in normalized units reflects sympathetic activity in the vessels. The infusion of vasoactive drugs (phenylephrine and sodium nitroprusside) was used to evaluate cardiac baroreflex sensitivity, and a vastus lateralis muscle biopsy was performed to evaluate atrogin-1 and MuRF-1 gene expression. RESULTS: The baroreflex sensitivity for increases (p = 0.002) and decreases (p = 0.02) in systolic blood pressure increased in the ET group. Muscle blood flow also increased only in the ET group (p = 0.004). Only the ET group had reduced resting muscular sympathetic nerve activity levels (p = 0.008) and sympathetic activity in the heart (LFnu; p = 0.004) and vessels (p = 0.04) after 4 months. Regarding skeletal muscle, after 4 months, participants in the exercise training group presented with lower atrogin-1 gene expression than participants who continued their activities as usual (p = 0.001). The reduction in muscular sympathetic nerve activity was positively associated with reduced atrogin-1 (r = 0.86; p = 0.02) and MuRF-1 gene expression (r = 0.64; p = 0.06); it was negatively associated with improved baroreflex sensitivity both for increases (r = -0.72; p = 0.020) and decreases (r = -0.82; p = 0.001) in blood pressure. CONCLUSIONS: ET improved cardiac and peripheral autonomic function in patients with subclinical chagasic cardiomyopathy. ET reduced MSNA and sympathetic activity in the heart and vessels and increased cardiac parasympathetic tone and baroreflex sensitivity. Regarding peripheral muscle, after 4 months, patients who underwent exercise training had an increased cross-sectional area of type I fibers and oxidative metabolism of muscle fibers, and decreased atrogin-1 gene expression, compared to participants who continued their activities as usual. In addition, the reduction in MSNA was associated with improved cardiac baroreflex sensitivity, reduced sympathetic cardiovascular tone, and reduced atrogin-1 and MuRF-1 gene expression. TRIAL REGISTRATION: ID: NCT02295215. Registered in June 2013.


Assuntos
Cardiomiopatia Chagásica , Sistema Nervoso Autônomo , Barorreflexo , Pressão Sanguínea , Cardiomiopatia Chagásica/terapia , Exercício Físico , Frequência Cardíaca , Humanos , Músculo Esquelético , Sistema Nervoso Simpático
18.
Mol Metab ; 39: 101012, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32408015

RESUMO

OBJECTIVE: We tested the hypothesis that exercise training would attenuate metabolic impairment in a model of severe cancer cachexia. METHODS: We used multiple in vivo and in vitro methods to explore the mechanisms underlying the beneficial effects induced by exercise training in tumor-bearing rats. RESULTS: Exercise training improved running capacity, prolonged lifespan, reduced oxidative stress, and normalized muscle mass and contractile function in tumor-bearing rats. An unbiased proteomic screening revealed COP9 signalosome complex subunit 2 (COPS2) as one of the most downregulated proteins in skeletal muscle at the early stage of cancer cachexia. Exercise training normalized muscle COPS2 protein expression in tumor-bearing rats and mice. Lung cancer patients with low endurance capacity had low muscle COPS2 protein expression as compared to age-matched control subjects. To test whether decrease in COPS2 protein levels could aggravate or be an intrinsic compensatory mechanism to protect myotubes from cancer effects, we performed experiments in vitro using primary myotubes. COPS2 knockdown in human myotubes affected multiple cellular pathways, including regulation of actin cytoskeleton. Incubation of cancer-conditioned media in mouse myotubes decreased F-actin expression, which was partially restored by COPS2 knockdown. Direct repeat 4 (DR4) response elements have been shown to positively regulate gene expression. COPS2 overexpression decreased the DR4 activity in mouse myoblasts, and COPS2 knockdown inhibited the effects of cancer-conditioned media on DR4 activity. CONCLUSIONS: These studies demonstrated that exercise training may be an important adjuvant therapy to counteract cancer cachexia and uncovered novel mechanisms involving COPS2 to regulate myotube homeostasis in cancer cachexia.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal , Proteínas Repressoras/metabolismo , Animais , Biomarcadores , Complexo do Signalossomo COP9/genética , Caquexia/etiologia , Caquexia/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Mioblastos/metabolismo , Neoplasias/complicações , Oxirredução , Proteômica/métodos , Ratos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais
19.
Sci Rep ; 10(1): 8001, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409748

RESUMO

The sympathetic nervous system is essential for maintenance of cardiac function via activation of post-junctional adrenergic receptors. Prolonged adrenergic receptor activation, however, has deleterious long-term effects leading to hypertrophy and the development of heart failure. Here we investigate the effect of chronic adrenergic receptors activation on excitation-contraction coupling (ECC) in ventricular cardiomyocytes from a previously characterized mouse model of chronic sympathetic hyperactivity, which are genetically deficient in the adrenoceptor α2A and α2C genes (ARDKO). When compared to wild-type (WT) cardiomyocytes, ARDKO displayed reduced fractional shortening (~33%) and slower relaxation (~20%). Furthermore, ARDKO cells exhibited several electrophysiological changes such as action potential (AP) prolongation (~50%), reduced L-type calcium channel (LCC) current (~33%), reduced outward potassium (K+) currents (~30%), and increased sodium/calcium exchanger (NCX) activity (~52%). Consistent with reduced contractility and calcium (Ca2+) currents, the cytosolic Ca2+ ([Ca2+]i) transient from ARDKO animals was smaller and decayed slower. Importantly, no changes were observed in membrane resting potential, AP amplitude, or the inward K+ current. Finally, we modified our existing cardiac ECC computational model to account for changes in the ARDKO heart. Simulations suggest that cellular changes in the ARDKO heart resulted in variable and dyssynchronous Ca2+-induced Ca2+ release therefore altering [Ca2+]i transient dynamics and reducing force generation. In conclusion, chronic sympathetic hyperactivity impairs ECC by changing the density of several ionic currents (and thus AP repolarization) causing altered Ca2+ dynamics and contractile activity. This demonstrates the important role of ECC remodeling in the cardiac dysfunction secondary to chronic sympathetic activity.


Assuntos
Eletrofisiologia Cardíaca , Acoplamento Excitação-Contração , Cardiopatias/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Algoritmos , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Imunofluorescência , Cardiopatias/etiologia , Cardiopatias/metabolismo , Camundongos , Modelos Biológicos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo
20.
Front Immunol ; 11: 616188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597950

RESUMO

Breast cancer is the most common malignancy among women worldwide. Over the last four decades, diagnostic and therapeutic procedures have improved substantially, giving patients with localized disease a better chance of cure, and those with more advanced cancer, longer periods of disease control and survival. However, understanding and managing heterogeneity in the clinical response exhibited by patients remains a challenge. For some treatments, biomarkers are available to inform therapeutic options, assess pathological response and predict clinical outcomes. Nevertheless, some measurements are not employed universally and lack sensitivity and specificity, which might be influenced by tissue-specific alterations associated with aging and lifestyle. The first part of this article summarizes available and emerging biomarkers for clinical use, such as measurements that can be made in tumor biopsies or blood samples, including so-called liquid biopsies. The second part of this article outlines underappreciated factors that could influence the interpretation of these clinical measurements and affect treatment outcomes. For example, it has been shown that both adiposity and physical activity can modify the characteristics of tumors and surrounding tissues. In addition, evidence shows that inflammaging and immunosenescence interact with treatment and clinical outcomes and could be considered prognostic and predictive factors independently. In summary, changes to blood and tissues that reflect aging and patient characteristics, including lifestyle, are not commonly considered clinically or in research, either for practical reasons or because the supporting evidence base is developing. Thus, an aim of this article is to encourage an integrative phenomic approach in oncology research and clinical management.


Assuntos
Envelhecimento , Biomarcadores Tumorais , Neoplasias da Mama , Estilo de Vida , Feminino , Perfilação da Expressão Gênica , Humanos , Fenômica , Fatores de Risco , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...